-continued | Ser | Cys | Ala
35 | Ala | Val | Pro | Ala | Glu
40 | Val | Ala | Arg | His | His
45 | Glu | His | Ala | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Ala | Arg
50 | Ala | Gly | Gln | CAa | Сув
55 | Ser | Ala | Val | Val | Gln
60 | Ala | Ile | Ala | Ala | | Pro
65 | Val | Gly | Ala | Val | Trp
70 | Ser | Val | Val | Arg | Arg
75 | Phe | Asp | Arg | Pro | Gln
80 | | Ala | Tyr | Lys | His | Phe
85 | Ile | Arg | Ser | CAa | Arg
90 | Leu | Val | Asp | Asp | Gly
95 | Gly | | Gly | Gly | Ala | Gly
100 | Ala | Gly | Ala | Gly | Ala
105 | Thr | Val | Ala | Val | Gly
110 | Ser | Val | | Arg | Glu | Val
115 | Arg | Val | Val | Ser | Gly
120 | Leu | Pro | Ala | Thr | Ser
125 | Ser | Arg | Glu | | Arg | Leu
130 | Glu | Ile | Leu | Asp | Asp
135 | Glu | Arg | Arg | Val | Leu
140 | Ser | Phe | Arg | Val | | Val
145 | Gly | Gly | Glu | His | Arg
150 | Leu | Ala | Asn | Tyr | Arg
155 | Ser | Val | Thr | Thr | Val
160 | | His | Glu | Ala | Glu | Ala
165 | Gly | Ala | Gly | Gly | Thr
170 | Val | Val | Val | Glu | Ser
175 | Tyr | | Val | Val | Asp | Val
180 | Pro | Pro | Gly | Asn | Thr
185 | Ala | Asp | Glu | Thr | Arg
190 | Val | Phe | | Val | Asp | Thr
195 | Ile | Val | Arg | CAa | Asn
200 | Leu | Gln | Ser | Leu | Ala
205 | Arg | Thr | Ala | | Glu | Arg
210 | Leu | Ala | Leu | Ala | Leu
215 | Ala | | | | | | | | | What is claimed is: 1. A method of increasing stress tolerance in a plant, the method comprising contacting the plant with a sufficient amount of a compound to increase stress tolerance in the plant compared to not contacting the plant with the compound; wherein the compound is selected from the group consisting of: and salts thereof, and wherein R¹ is an heterocycyl, aryl, or heteroaryl group, optionally substituted with from 1 to 4 R⁹ groups; L is selected from the group consisting of a single bond, -O-, $-(O)_m-CH_2-$, and $-(O)_m-CH(R^{10})-$; m is an integer selected from the group consisting of 0 and 1; wherein if R¹ is 2,5-dichlorophenyl and R² is —(O) $_{m}$ —CH₂—, m is 0; Y is —C(=O)— or —S(=O)₂—; R^{2a} and R^{2b} are selected from the group consisting of hydrogen and R^{10} , wherein at most one of R^{2a} or R^{2b} is hydrogen; or, alternatively, R^{2a} and R^{2b} join to form a four- to seven-membered carbocyclic or heterocyclic ring, optionally substituted with from 1 to 4 R⁹ groups; R³ is selected from the group consisting of hydrogen, R¹⁰, and C_{7-11} arylalkyl, optionally substituted with from 1 to 4 R⁹ groups; R^{4a} and R^{4b} join to form a heteroaryl group, wherein the heteroaryl group is part of a polycyclic group with one or two additional fused carbocyclic, heterocyclic, aryl, or heteroaryl rings; and wherein the polycyclic group is optionally substituted with from 1 to 4 R⁹ groups; R⁵ and R⁶ are each an aryl or heteroaryl group, optionally substituted with from 1 to 4 R⁹ groups; R⁷ is selected from the group consisting of —NH(R¹¹), —NH(CO)(R^{11}), and R^{11} ; or, alternatively, R^7 and R^8 join to form a 1,2,3,4-tetrahydroquinoline or 3,4-dihydroquinolin-2(1H)-one ring, wherein said ring is optionally substituted with from 1 to 4 R9 groups; R⁸ is selected from the group consisting of hydrogen and R^1 , wherein R^8 is hydrogen only if R^7 is —NH(R^{11}); or, alternatively, R⁷ and R⁸ join to form a 1,2,3,4-tetrahy-droquinoline or 3,4-dihydroquinolin-2(1H)-one ring, wherein said ring is optionally substituted with from 1 to 4 R⁹ groups; each R⁹ is independently selected from the group consisting of C₁₋₆ alkyl, C₃₋₆ cycloalkyl, C₁₋₆ haloalkyl, C₁₋₆